Distinct Activities of Exonuclease 1 and Flap Endonuclease 1 at Telomeric G4 DNA

نویسندگان

  • Aarthy C. Vallur
  • Nancy Maizels
چکیده

BACKGROUND Exonuclease 1 (EXO1) and Flap endonuclease 1 (FEN1) are members of the RAD2 family of structure-specific nucleases. Genetic analysis has identified roles for EXO1 and FEN1 in replication, recombination, DNA repair and maintenance of telomeres. Telomeres are composed of G-rich repeats that readily form G4 DNA. We recently showed that human EXO1 and FEN1 exhibit distinct activities on G4 DNA substrates representative of intermediates in immunoglobulin class switch recombination. METHODOLOGY/PRINCIPAL FINDINGS We have now compared activities of these enzymes on telomeric substrates bearing G4 DNA, identifying non-overlapping functions that provide mechanistic insight into the distinct telomeric phenotypes caused by their deficiencies. We show that hFEN1 but not hEXO1 cleaves substrates bearing telomeric G4 DNA 5'-flaps, consistent with the requirement for FEN1 in telomeric lagging strand replication. Both hEXO1 and hFEN1 are active on substrates bearing telomeric G4 DNA tails, resembling uncapped telomeres. Notably, hEXO1 but not hFEN1 is active on transcribed telomeric G-loops. CONCLUSION/SIGNIFICANCE Our results suggest that EXO1 may act at transcription-induced telomeric structures to promote telomere recombination while FEN1 has a dominant role in lagging strand replication at telomeres. Both enzymes can create ssDNA at uncapped telomere ends thereby contributing to recombination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activities of human exonuclease 1 that promote cleavage of transcribed immunoglobulin switch regions.

Eukaryotic exonuclease 1 functions in replication, recombination, mismatch repair, telomere maintenance, immunoglobulin (Ig) gene class switch recombination, and somatic hypermutation. The enzyme has 5'-3' exonuclease, flap endonuclease, and weak RNaseH activity in vitro, but it has been difficult to reconcile these activities with its diverse biological functions. We report robust cleavage by ...

متن کامل

Characterization of the endonuclease and ATP-dependent flap endo/exonuclease of Dna2.

Two processes, DNA replication and DNA damage repair, are key to maintaining genomic fidelity. The Dna2 enzyme lies at the heart of both of these processes, acting in conjunction with flap endonuclease 1 and replication protein A in DNA lagging strand replication and with BLM/Sgs1 and MRN/X in double strand break repair. In vitro, Dna2 helicase and flap endo/exonuclease activities require an un...

متن کامل

Flap endonuclease of bacteriophage T7

Gene 6 protein of bacteriophage T7 has 5'-3'-exonuclease activity specific for duplex DNA. We have found that gene 6 protein also has flap endonuclease activity. The flap endonuclease activity is considerably weaker than the exonuclease activity. Unlike the human homolog of gene 6 protein, the flap endonuclease activity of gene 6 protein is dependent on the length of the 5'-flap. This dependenc...

متن کامل

Thermostable flap endonuclease from the archaeon, Pyrococcus horikoshii, cleaves the replication fork-like structure endo/exonucleolytically.

The flap endonuclease gene homologue from the hyperthermophilic archaeon, Pyrococcus horikoshii, was overexpressed in Escherichia coli and purified. The results of gel filtration indicated that this protein was a 41-kDa monomer. P. horikoshii flap endonuclease (phFEN) cleaves replication fork-like substrates (RF) and 5' double-strand flap structures (DF) using both flap endonuclease and 5'-3'-e...

متن کامل

AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair

Base excision repair (BER) of an oxidized base within a trinucleotide repeat (TNR) tract can lead to TNR expansions that are associated with over 40 human neurodegenerative diseases. This occurs as a result of DNA secondary structures such as hairpins formed during repair. We have previously shown that BER in a TNR hairpin loop can lead to removal of the hairpin, attenuating or preventing TNR e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010